Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract This study shows the impact of black carbon (BC) aerosol atmospheric rivers (AAR) on the Antarctic Sea ice retreat. We detect that a higher number of BC AARs arrived in the Antarctic region due to increased anthropogenic wildfire activities in 2019 in the Amazon compared to 2018. Our analyses suggest that the BC AARs led to a reduction in the sea ice albedo, increased the amount of sunlight absorbed at the surface, and a significant reduction of sea ice over the Weddell, Ross Sea (Ross), and Indian Ocean (IO) regions in 2019. The Weddell region experienced the largest amount of sea ice retreat ($$ \sim \mathrm{33,000} $$km2) during the presence of BC AARs as compared to$$ \sim \mathrm{13,000} $$ km2during non-BC days. We used a suite of data science techniques, including random forest, elastic net regression, matrix profile, canonical correlations, and causal discovery analyses, to discover the effects and validate them. Random forest, elastic net regression, and causal discovery analyses show that the shortwave upward radiative flux or the reflected sunlight, temperature, and longwave upward energy from the earth are the most important features that affect sea ice extent. Canonical correlation analysis confirms that aerosol optical depth is negatively correlated with albedo, positively correlated with shortwave energy absorbed at the surface, and negatively correlated with Sea Ice Extent. The relationship is stronger in 2019 than in 2018. This study also employs the matrix profile and convolution operation of the Convolution Neural Network (CNN) to detect anomalous events in sea ice loss. These methods show that a higher amount of anomalous melting events were detected over the Weddell and Ross regions.more » « lessFree, publicly-accessible full text available January 1, 2026
-
The melting of ice sheets significantly contributes to sea level rise, highlighting the crucial need to comprehend the structure of ice for climate benefits. The stratigraphy of ice sheets revealed through ice layer radargrams gives us a window into historical depth-age correlations and accumulation rates. Harnessing this knowledge is not only crucial for interpreting both past and present ice dynamics, especially concerning the Greenland ice sheet, but also for making informed decisions to mitigate the impacts of climate change. Ice layer tracing is prevalently conducted using manual or semi-automatic approaches, requiring significant time and expertise. This study aims to address the need for efficient and precise tracing methods in a two-step process. This is achieved by utilizing an unsupervised annotation method (i.e., ARESELP) to train deep learning models, thereby reducing the need for extensive and time-consuming manual annotations. Four prominent deep learning-based segmentation techniques, namely U-Net, U-Net+VGG19, U-Net+Inception, and Attention U-Net, are benchmarked. Additionally, various thresholding methods such as binary, Otsu, and CLAHE have been explored to achieve optimal enhancement for the true label annotation images. Our preliminary experiments indicate that the combination of attention U-Net with specific processing techniques yields the best performance in terms of the binary IoU metric.more » « less
-
We present an innovative approach to auto-annotate Expert Defined Linguistic Features (EDLFs) as subsequences in audio time series to improve audio deepfake discernment. In our prior work, these linguistic features – namely pitch, pause, breath, consonant release bursts, and overall audio quality, labeled by experts on the entire audio signal – have been shown to improve detection of audio deepfakes with AI algorithms. We now expand our approach to pilot a way to auto annotate subsequences in the time series that correspond to each EDLF. We developed an ensemble of discords, i.e. anomalies in time series, detected using matrix profiles across multiple discord lengths to identify multiple types of EDLFs. Working closely with linguistic experts, we evaluated where discords overlapped with EDLFs in the audio signal data. Our ensemble method to detect discords across multiple discord lengths achieves much higher accuracy than using individual discord lengths to detect EDLFs. With this approach and domain validation we establish the feasibility of using time series subsequences to capture EDLFs to supplement annotation by domain experts, for improved audio deepfake detection.more » « less
An official website of the United States government
